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Abstract. We determine the diffusion constant K for unbiased, discrete-time random walks 
on infinitely long planar strips of finite width with regularly spaced, stepped edges that 
model, albeit in a simple and regular manner, some of the features of the cormgated 
surfaces ofdi5nian channels in p0;ous media. We derive a formal expression for K and 
use it to compute K exactly for a range of values of the strip width and the step width, 
the latter serving as a measure of the roughness of the boundaries. We consider also the 
role of specific boundary conditions at the edges by determining K for both myopic and 
blind random walkers in each case. Our results shed some light on the effects of spatially 
in homogeneous^ transverse boundaries on the coefficient of diffusion in the longitudinal 
direction. 

1. Introduction 

In the diffusion of a fluid through a porous medium [ 1-41, the fluid flows along channels 
of various sizes with irregular boundaries. The diffusion constant for flow along any 
of these channels would depend in general on its structure, and could therefore be 
used as a probe of the geometry of the medium-in particular, of the transverse size 
of the channels, the specific shape of the boundary and the boundary conditions. We 
attempt to find the size and shape dependence of the diffusion constant for a random 
walk (RW) on a lattice in which the geometry of the ‘surface’ is modelled in a simple 
hut non-trivial way. 

Consider Erst an unbiased RW in discrete time n, on a square lattice in the form 
of a strip that is infinitely long in the x-direction and of finite width in the y-direction. 
The sites on the strip are labelled ( j ,  m) where j e Z  and m = 1,2, .  . . , N. At an interior 
site (i.e. 2 G m  == N -  l), the walker jumps at the end of a time step to any one of the 
four nearest-neighbour (nn) sites with a probability equal to 2. Along the edges of the 
strip, a variety of boundary conditions can be imposed: in general, the walker may be 
taken to remain at a boundary site with a probability r at the end of a time step, or 
to jump with probability (1 -r)/3 (as the RW is unbiased) to any one of the three nn 
sites. The stay probability r serves to  parametrize the nature of the boundary. The 
value I’= corresponds to a blind RW, i.e. the standard RW with reflecting boundary 
conditions. Only in this case do the motions along the x and y directions decouple 
from each other, and the mean square displacement in the unbounded direction, (Xi), 
is exactly equal to 4 2 .  Thus the diffision constant, defined as 
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is just 5 (the value of K on an infinite two-dimensional lattice), independent of the 
size of the strip in the y-direction. For every other value of r, the boundary condition 
introduces correlations between the motions along the two directions. This results in 
a diffusion constant that depends on the lateral size N of the strip (and on r) [ 5 ] :  
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N(l-I?) 
K =  

2 ~ ( 1  -r)+4r- 1' 

As stated earlier, the parameter r is a convenient way of characterizing the nature of 
the boundaries of the strip. If r=O, we have 'slip' boundary conditions-the walker 
does not stay at any site after a time step, and he jumps from any site to its nn sites 
with equal probabilities: from boundary sites. (The RW is a 
myopic one [6,7].) The boundaries get stickier as r+ 1, so that K decreases. In the 
limit r = 1, of course, the sites on the edges are perfect traps, and K vanishes because 
there is no long-range diffusion. 

The roughness of the boundary may also be simulated, to some extent, with the 
help of the parameter r. For instance, suppose there is an identical side branch or 
cluster of sites of finite size attached to each site on the edges of the strip. If these 
appendages are connected with each other only through the corresponding base sites 
( j ,  1 )  or ( j ,  N )  on the main strip, then K can be found [ 5 ]  for such geometries [8, 91 
from (2), as follows: the mean first passage time [lo, 111 from a site on the edge to 
any of its three neighbours on the main strip must be calculated, and substituted for 
(i-rp in (2) .  

While this procedure can be used to compute K in several cases, it has a serious 
limitation that restricts its use in many other situations. Any physical boundary would 
certainly be corrugated (and also irregular) on various length scales. Moreover, a 
diffusing particle exploring such a corrugation may simultaneously progress in the 
direction in which diffusion occurs (here, the x-direction). In our RW model, this means 
that the walker may leave the strip at some edge site, say ( j ,  l), and re-enter it at 
another edge site ( j ' ,  1) after diffising along the sites of a corrugation outside the main 
strip. We need a simple model that takes this important circumstance (the possibility 
of such loop-like paths) into account. It must also be sufficiently regular in its geometry 
to permit an analytic solution to be obtained, so that we may draw reliable conclusions 
regarding the dependence of K on the degree of roughness of the edges. With these 
considerations in mind, we set up a suitable model of the boundaries in the next section. 

from interior sites, 

2. The model 

We consider unbiased RWS on strips with regularly spaced stepped edges as shown in 
figure 1. The width of the strip is characterized by N, as before. The ratio 1/1 of the 
height of each step to its width is a measure of the roughness of the edges of the strip: 
as 1 increases, the roughness decreases. We may, of course, consider many other 
variations of this simple geometry-steps of different heights, shapes, etc. However, 
the model we consider (and solve exactly for K )  already has the essential features 
whose effects on K we seek to probe. 

The sites on the strip are labelled (j, m )  as before, but now m runs from 0 to N +  1. 
On the main strip (1 m S N) we have j E Z, but on the boundary lines m = 0 and 
m = N +  1, not all sites are present: a row of 1 sites is followed by a gap of (1-2) sites, 
and the pattern is repeated. Thus we have sites with 4nns (these include all the interior 
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j=l 1.1 

Figure 1. The lattice on which the random walk takes place, in the case 1=4. 7'he block 
of sites from the column j = 1 to the column j = 21-2 is repeated on the left and right to 
form the infinite snip. 

sites and the corner sites on the lines m = 1 and m = N ) ,  three nns (the edge sites on 
the lines m = 0, m = 1, m = N and m = N+l) ,  and two nns (the corner sites on the 
lines m = O  and m = N+lL In order to examine simultaneously the effect on K of 
boundary conditions as well, we consider two basic cases: blind and myopic random 
walks (BRW and MRW). In the BRW, the walker jumps with a probability $ from any 
site (j, m )  to each of its qjm available nn sites, and stays at the original site with a 
probability ( l - iqjm) at the end of a time step. In the MRW, the walker jumps with a 
probability l / q j m  to each of the available nn sites [6,7], the stay probability at a site 
being zero. 

The diffusion constant K is the coefficient of the leading (O(n ) )  term in (Xi), and 
may be extracted without solving the RW problem exactly. We derive below a~compact 
formula for K in terms of the determinant of a certain matrix, which makes it possible 
to obtain the exact value of K in quite non-trivial cases. 

3. Formula for the diffusion constant 

One begins with the set of rate equations for the time-dependent probabilities P,(j, m ) ,  
where 0 S m S N + 1 and 1 < j c 21- 2 (see figure, 1). We need to write equations only 
for these values ofj, because of the periodicity in the x-direction. Let R(k, m, 5) denote 
the discrete double transform of Pn(j, m ) ,  

m m  

The set of rate equations for Pn(j, m )  cannot be transformed directly into one for 
R(k, m, 5) because the~periodicity in j is (21-2), rather than 1. Therefore we break 
up the summation overj  in (3) into (21-2) parts, such that 

where 
m m  

R,= C "4 1 Pn(s+(21-2)r ,  m)5" exp[ik(s+(21-2)r)]. (5) 
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For brevity in writing, we shall henceforth write R,(k, m, 5)  as R,(m), suppressing the 
k and .$ dependence. Let R be the column vector with (N+2)1+  N ( 1 - 2 )  elements 
whose transpose is 
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R' = (RT, . . . , RT, RL,, . . . , RZ-,) (6)  

where R, is itself a column vector with elements R,(m); the index m runs from 0 to 
( N  + 1) for 1 s s s I ,  and from 1 to N for I +  1 S s S 21 -2. Then R satisfies a matrix 
equation of the form MIW =f; where M is a square matrix of order ( N  +2)1+ N(1-2) 
which is not tridiagonal, andfdepends on the initial distribution Po(j, m). The quantity 
we seek is (X:), whose &transform is given by 

(We have not explicitly indicated a further averaging over the initial position of the 
walker, as K is actually independent of the latter.) The expression in curly brackets 
is just the sum of all the elements of R. Using the fact that R = M-'f; this is of the form 

C Z R s ( m ) = N ( k , 5 ) l U k 5 )  (8) 
s m  

where 

A(k , t )=de tM (9 )  

and the numerator N is obtained by operating on f with the matrix formed by the 
cofactors of M'. Both N and A are polynomials in 5 and entire functions of k. The 
normalization of P,,(j, m)  implies that N(0, C)/A(O, 5 )  = (1 -,$)-I. Moreover, it turns 
out that A depends on k only through e =  cos k. (We show this in appendix B.) Using 
the foregoing, (7) reduces to 

As there are no absorbing sites on the lattice, the matrix occurring in the original set 
of rate equations for Po(j, m )  is a stochastic one. This implies that the elements of 
each column of A(O,t) add up to (1 - 5).  It is therefore the first term in square brackets 
in (10) that has a double pole at 5 = 1, which in turn produces the leading asymptotic 
behaviour (X:)- Kn when the g3ransform is inverted. Writing A(0, c) = 
( f - l ) (~A(o ,  t)/Jc),=,+. . . , the leading asymptotic behaviour of (Xz) is therefore 
contained in 

It is easy to see that this leads to the compact and exact formula 

on using the definition of K in (1). 
The actual computation of K may be simplified further. As K is independent of 

the initial position of the walker, we may choose Po(j, m) so as to have (for all times 
n 3 0) the symmetry property Pn(j, m)  = Pn(j, N + 1 - m). Introduced into the rate 
equations for Pn(j, m),  this symmetry essentially halves the number of independent 
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equationsfromZ(NZ-N+l) to [(N+l)/2](21-2)+1,where [aJstands forthelargest 
integer sa. The foregoing procedure for finding K essentially goes through, but with 
a ‘reduced’ matrix M’. The determinant of M‘ can be shown to be the same as that 
of M, namely, A. This makes it easier to evaluate K following (12). In appendix A, 
we have given an explicit illustration of the procedure for a myopic RW in the case 
N = 2 and 1 = 3, for a general value of the parameter r (the stay probability at a site 
on the edge of the strip) introduced in section 1. 

4. Numerical results and discussion 

Using the software package MACSYMA, we have computed K explicitly for a number 
of values of N and 1 using (12), for both blind and myopic RWS. The dimensionality 
[ ( N +  1)/2](21-2)+ 1 of the determinant A increases rapidly with increasing N and 1 
(in particular the latter), making the calculations increasingly complicated. We find 
that K is always a rational number. Our numerical results are listed in tables 1 and 
2. To bring out the considerable variation in K with varying N and I, we have plotted 
K as a function of 1/N for different values of I in figure 2, for the BRW and the MRW. 
(B2 denotes a blind walk for I = 2, etc.) The abscissa has been chosen to be 1/ N rather 
than N so that the entire range of physical values of N can be displayed. The curves 
shown represent interpolations between points corresponding to integer values of N. 
It is remarkable that these values lie, in each case, on smooth, monotonic cumes. The 
limiting case N = 1 is actually quasi-one-dimensional; to ensure that this case is part 

Table 1. K for lattices with 1 = 2. 

N 1 2 3  4 5 6 7 8 9 10 

K(BRW) 
3482 5 2 79 44 741 

24 7 -240 ’ 123 1960 239 14688 6965 104632 8119 
__ - - - 94 5951 2888 44197 - - -  - - _ _  

44197 41784 
1673 13056 ~ 12537 95120 89309 
- - - - .  - 5 ~8 79 88 241 752 5951 5776 

16 21 192 205 560 
K(MRw)- - - - - 

Tsble 2. K for lattices with l=  3,4 

1 = 3  1=4 

N K(BRW) K(MRW) K(BRW) K(MRW) 

8 4 
15 21 

- - 1 
207 207 

700 500 
- - 

63 12 
35 55 ~ 170 130 

- 63 - 24 - - 2 

41 - 41 
108 90 
- - 3 
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. ,  

1 I N  

Figure 2. Variation of the diffusion constant K with the inverse strip width 1/N Blind 
and myopic walks ace labelled B and M respectively, while the adjacent numbers denote 
the value of 1, the number of sites in the corrugations on the edges of the strip. 

of the family of lattices considered here, we have taken the jump probability out of a 
site on the linear chain part of the structure to either one of its nn sites to be for the 
MRW and $ for the BRW. 

When the edges of the strip have no corrugations at all (we may consider this to 
correspond to I = O ) ,  K = f  for the BRW (for Na2) and NJ(2N-1)  for the MRW 

(obtained [ 121 by setting r = 0 in (2)). It may be noted that the latter value is actually 
greater than the free two-dimensional value~f. When I =  1, we have a vertical branch 
or spike with a single site emanating from each site on the edges of the strip. K may 
be found analytically [ 5 ]  as a function of N in this case: we have, respectively, 
K = N/(2N+4)  for the BRW and K = N / ( 2 N +  1) for the MRW. These expressions 
(plotted in curves B1 and M1 respectively) turn out to be valid for N = 1 as well. 

The cases I = 0 and 1 = 1 do not belong, in some sense, to the family of lattices of 
primary concern here. The latter commences with 1 = 2: we now have corrugations at 
the edges in which the walker can get trapped, but in which motion in the x-direction 
is also possible along loop-like paths leaving and re-entering the main strip at different 
sites. As 1 increases (for a fixed value of N ) ,  K increases. (For the MRW, we see that 
K is larger for I = 1 than it is for I = 2; but I = 1 is a different kind of structure, as we 
have pointed out. For myopic boundary conditions, the enhanced tendency of the 
walker to be pushed out of the side branch into the main strip overcomes the trapping 
effect of the branch in the case I =  1, which is why the curve MI lies above the curve 
M2.) Moreover, the value of K for the MRW is always greater than that for the BRW 
(for a given N and I ) ,  as one would expect: in the BRW, the walker has a non-zero 
stay probability at the surface sites, which helps reduce the value of K. 
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In order to have a concrete example of the role played by the nature of the boundary 
in determining the diffusion coefficient, we have also computed K as a function of r, 
the stay probability at edge sites, for N =2 and 1 = 3. The details are given in appendix 
A. The final resnlt is 

Now r is the probability that the walker stays on at the end of a time step at a site 
on the edges of the strip, while 2r is the stay probability at a corner site on a corrugation, 
such as the site j = 1, m = 0 in figure 1. (We can find K for arbitrary stay probabilities 
r and y at edge and corner sites, respectively, but nothing significantly new is learnt 
from this generalization.) As explained in appendix A, the values r = 0 and a correspond 
to myopic and blind walks, respectively. The diffusion constant decreases monotonically 
from the value for the MRW, through K =$for the BRW to 0 for r =f. We note that 
this is the maximum possible value of r in this instance, since the corner sites become 
perfect traps when 2r = 1: as first passage to any of these sites is a sure event on the 
lattice concerned, their presence suffices to stop the long-range diffusion of the walker. 

Finally, one may ask what happens for very large values of N and L As N -t m, 
the effects of the edges, corrugations and boundary conditions obviously diminish. K 
approaches f, the standard value in two dimensions, as expected. On the other hand, 
the limit 1 + 00 ( N  remaining finite) is much  more^ delicate, because the definition of 
K implies that the n+m limit of ( X i ) / n  is to he taken first. Therefore one must 
compute K analytically as a function of 1 for a general value of N in order to~find its 
exact limiting value as I+m. In the absence of such an expression, if we assume that 
the two limits commute, it can be shown that the limiting value of K is given by a 
certain weighted harmonic mean of the values of K for two uncorrugated strips of 
widths N and N+2, respectively: thus K remains f for the BRW, while for the MRW 

it lies in between the values N / ( 2 N - 1 )  and (N+2)/(2N+3).  This computation 
involves the determination of K on a non-periodic lattice, and will be reported 
elsewhere as part of a general investigation of random walks on inhomogeneous 
structures. 

In conclusion, we have shown by an exact calculation in a simple model that 
spatially inhomogeneous boundaries in the transverse direction have a significant effect 
on the coefficient of the leading asymptotic behaviour of the mean square displacement 
in the longitudinal direction. This conclusion remains valid even in the case of a blind 
random walk (perfectly reflecting boundary conditions), for which the difision con- 
stant is actually independent of the transverse size of the strip when the edges have 
no inhomogeneities. Although we have restricted ourselves to a two-dimensional lattice, 
the general method used can be applied to higher dimensional lattices to arrive at 
qualitatively similar conclusions. 

Appendix A. IC for the case N = 2, l = 3 

In order to illustrate the method outlined in the text for finding the diffusion constant, 
we calculate K explicitly for a myopic random walk in the relatively simple case N = 2, 
1 = 3. In this case, the label s takes on values from 1 to 4, the last of these corresponding 
to a column of two sites in the ‘regular’ ( N  = 2) part of the strip. The sites are labelled 
by (s+4r,  m) where ~ E Z .  Fors = 1,2 and3, we haveOS m S 3 ;  while fors =4, m = 1,2. 
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We thus have a basic set Of (3)(4) + 2 = 14 coupled rate equations to deal with. Moreover, 
we consider a whole family of boundary conditions by introducing the quantity that 
parametrizes the 'stickiness' of the boundaries. The walker stays at the end of a time 
step with probabilities 0, r and 2r at sites with 4, 3 and 2 nearest neighbours, 
respectively. The corresponding jump probabilities to any of the nn sites are therefore 

( l - r ) /3  and (1-2r)/2 respectively. Thus r=O (respectively, $) implies that the 
walker is myopic (blind) at all sites. 

Instead of writing down the full set of 14 coupled equations, let us exploit the 
symmetry of P,,(j, m )  to simplify the calculation. As K is independent of the starting 
point of the walker, we may choose the initial distribution 

S Reuathi and V Balakrishnan 

1 

P&, m )  = 6j,~(6m,l + S m d / 2  (All 

so that the symmetry relation P. ( j ,  m) = P,, ( j ,  3 - m )  holds good for all n. The set of 
rate equations for Pn(j, m )  then reduces to a set of seven coupled equations. To save 
space, we do not write these down here. As in (S), we define the quantities (now 
symmetry-reduced) 

c3 m~ 

(A21 ih(r+4r) RAk m, 5) = C C PAS-% m)5" e 
,=-m "4 

where O s m G l  for lSsS-3, and m = l  for s = 4 .  Recall that we write R,(k m,[) as 
R,(m) for brevity. The column vector R (equation (6)) is now given by 

R =  (Ri(O), Ri(1), NO), Rdl),  R,(O), R3(1), RA1))'. (A3) 

The rate equations for Pn(j, m) now lead to the matrix equation M R  = f for W, where 
M' is the matrix 

5 

5 1 -- 4 

_- 
4 

0 

-- '6 eih 

4 

0 

0 

- i e - i h  

4 

-g 4 k  0 0 0 0 

_- t e - i h  0 0 

3 p e  

5 i h  - - pe  
3 4 0 

0 5 -ik 0 -- v e 
2 

5 
4 

5 1 -- 

-- 1-rg 

5 
-5" 4 

0 5 -ik --e 
4 

5 1-2r5 -- 

4 2 v  4 3 

0 

0 
4 0 5 

3 

-- cei* __ 5 5 5 -ih 1--  - - p e  0 

-- 
4 

0 0 0 

Here we have written p for 1-r and v for l-Zr, for brevity. We can show that 
A = det M' is a function of e = cos k as far as its k-dependence is concerned. Using 
(U),  we obtain for K the result quoted in (13). 
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Appendix B. Dependence of det M on k 

The variable k appears only as eik and e-;‘ in the elements of M. Therefore, to prove 
that det M = A is a function of c = cos k, we need to show that A(k, 5) = A(-k, 5). We 
recall that the dimensionality of M is (N+2)1+N(1-2 ) .  (The index s labels the 
vertical row of sites on the lattice. When 1 S s S 1, the vertical coordinate m rum from 
0 to .N+l;  when l + l s s s 2 1 - 2 ,  m runs from 1 to N.) Afterwritingdowndet M = A ,  
we interchange the block of rows corresponding to s = i  with the block corresponding 
to s = 1 + i - 1, for 1 S s S 1. Similarly, the corresponding columns are interchanged. 
For 1 + 1 =z s s 21 - 2, the rows (and columns) corresponding to s = 1 + i are interchanged 
with those corresponding to s = 21 - 1 - i. These interchanges take A( k, 5) into A( -k, 5). 
However, the total number of interchanges is 2[1/2]+2[(1-2) /2] ,  which is even. 
Therefore A(k, 5) = A(-k, 5) in general, and it follows that A is a function of c = cos k 

Alternatively, we have the following indirect argument. The counterpart of (10) for 
the mean displacement itself is 

(Xn) = + E-’ ”) , 
A a k  A’ak k=O 

The second term on the right has a double pole at 5 = 1 when k = 0, and will lead to 
an O ( n )  asymptotic behaviour of ( X J .  But this is impossible, as the walk is unbiased. 
Hence (aA/ak),=, must vanish, which leads to the same conclusion as before. 
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